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Abstract: Social media data, such as photos and status posts, can be tagged with location information
(geotagging). This geotagged information can be used for urban spatial analysis to explore neighbor-
hood characteristics or mobility patterns. With increasing rural-to-urban migration, there is a need
for comprehensive data capturing the complexity of urban settings and their influence on human
experiences. Here, we share an urban image stimulus set from the city of Lisbon that researchers
can use in their experiments. The stimulus set consists of 160 geotagged urban space photographs
extracted from the Flickr social media platform. We divided the city into 100 × 100 m cells to cal-
culate the cell image density (number of images in each cell) and the cell green index (Normalized
Difference Vegetation Index of each cell) and assigned these values to each geotagged image. In
addition, we also computed the popularity of each image (normalized views on the social network).
We also categorized these images into two putative groups by photographer status (residents and
tourists), with 80 images belonging to each group. With the rise in data-driven decisions in urban
planning, this stimulus set helps explore human–urban environment interaction patterns, especially
if complemented with survey/neuroimaging measures or machine-learning analyses.

Dataset: The urban image stimulus set is available for download on the Open Science Framework
(OSF) (https://osf.io/c79w5/, accessed on 23 November 2023).

Dataset License: The urban image stimulus set is being made available under the CC0 1.0 Universal
license.

Keywords: social media; urban photographs; human–urban environment interactions

1. Summary

Social media have become an integral part of people’s everyday lives. More than four
billion individuals use social media globally, and it is anticipated that this number will
grow to almost six billion by 2027 [1]. The widespread use and influence of social media
have drawn the interest of researchers from diverse areas, leading to an increase in scientific
studies [2–4]. Social media platforms like Facebook, Instagram, X/Twitter, and TikTok
provide rich and valuable data sources in the form of text, photos, videos, likes, comments,
shares, and other interactions [5]. Some visual media-sharing platforms, like Flickr, also
offer the possibility for users to upload, store, and share photo and video data with other
users [6,7]. Moreover, certain platforms (Facebook, X/Twitter, etc.) also allow users to add
geographical location tags to their posted content to indicate the user’s location and/or
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where the content was captured. Since our usage and dependency on mobile devices
continue to rise, people have become a crucial source for collecting, retrieving, sharing, and
disseminating various types of information.

Geotagged social media data also form a significant aspect of volunteered geographic
information (VGI), which is a concept that depends on the voluntary contributions of indi-
viduals who are willing to share location-based information through digital platforms [8–10].
Within VGI, there is a subset that falls in the category of citizen science, involving non-
professional scientists or citizens in data collection and, to some extent, analysis [11]. Social
media users also serve as passive contributors to citizen science initiatives (a subset of
VGI) when they share geotagged content that has the potential to be utilized in scientific
research [12]. Crowdsourcing geotagged social media data can be a valuable technical and
methodological tool for researchers and analysts in various fields, including environmental
studies, psychology, transport and urban planning, tourism, behavioral economics, and
other social sciences [7,11,13,14].

Geotagged social media content plotted on maps allows for visualizing the distribution
and concentration of these data across different locations, giving insights into preferences
(most sought-after locations), popular activities, interests, and emerging trends [13,15,16].
Furthermore, the number of views and “likes” that these geotagged media receive often
indicates their popularity on social media, which can help researchers understand both
online and offline social behavior [17]. For instance, Tenkanen et al. [18] compared the
monthly official visitor statistics in 56 recreational protected areas (national parks) in 2014 to
the visitation metric derived from Flickr, Instagram, and Twitter (currently known as X). The
official visitor statistics comprised monthly data from installed electronic counters and sold
entrance tickets, and the number of social media users posting content from these national
parks aggregated for each month was the measure of social media-derived visitation
statistics. The results showed a consistent relationship between monthly official visitor
counts and social media-derived visitation statistics across all three platforms combined.
Thus, geotagged social media data can serve as a valuable source of information for
monitoring visitor numbers and gaining insights into a place’s popularity and visiting
patterns over time.

It is important to highlight that global urbanization has been rapidly increasing, with
57% of the world’s population currently living in urban areas [19], and, according to the
United Nations, this percentage will reach 68% by 2050 [20]. Consequently, numerous
studies have emerged that link the well-being of individuals to the urban environment
that they live in [21–23]. A recent study spanning 60 developed countries and including
230 million people established a positive link between urban green space and a nation’s
happiness level [24]. This study’s urban green space amount was measured using the
Normalized Difference Vegetation Index (NDVI) computed from high-resolution satellite
images for different countries. Geotagged data can also be employed at a regional and
community level by analyzing neighborhood characteristics such as demographics and
environmental factors to improve the quality of life for individuals. Another study by Stier
and colleagues [25] used geotagged Twitter (currently known as X) datasets to identify
words related to depressive symptoms in users’ tweets. They found that larger urban areas
in the US with denser socioeconomic network connections had lower rates of depression.
Geotagged data can thus provide vital insights into the impact of the urban environment
on mental health and well-being [26]. In sum, geotagged data can play an important role
in urban planning and development initiatives, enabling planners to make data-driven
decisions to improve urban livability and sustainability and help policymakers to derive
policy recommendations tailored to local needs.

To facilitate research in the domains mentioned above, we created a rich stimulus
set of 160 urban space images of Lisbon. We sourced these images from the Flickr social
media platform, and all images were geotagged, with a linked owner identification tag and
upload date. We divided the city into 100 × 100 m cells to calculate the cell image density
(number of images in each cell) and cell green index (Normalized Difference Vegetation
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Index for each cell). Then, we assigned these values to each image based on their geotagged
information. In addition, we also provide the popularity of each image (normalized views
on the social network). Finally, we categorized these images into two putative groups by
photographer status (residents and tourists), with 80 images belonging to each group.

In addition to our stimulus set, other researchers have created valuable datasets that
include urban space images, such as Placepulse [27], Cityscapes [28], and ADE20K [29]. Of
note, Placepulse also contains geotagged images from Lisbon, similar to our stimulus set.
However, this dataset does not explicitly provide several relevant metrics we computed,
such as popularity or the amount of greenery associated with each image. Instead, it offers
pairwise comparisons and rankings for each image based on attributes like safety, liveliness,
and aesthetics. ADE20K and Cityscapes, on the other hand, do not have geotagged images,
nor do they provide other specific metrics (for greenery or popularity of the image). We
believe that our stimulus set (used alone or possibly in conjunction with other available
urban space datasets) aligns with the collaborative nature of VGI and could provide a
strong foundation for future studies, especially for exploring urban environment–human
interaction patterns. This stimulus set can be a valuable tool for urban planners to better
understand how people move across space through time and what sort of activities they
perform through behavioral and neurocognitive measures, as well as for social media
researchers to assess various aspects of online social behavior.

2. Data Description

We have provided this urban image stimulus set for download on the Open Science
Framework (OSF) (https://osf.io/c79w5/, accessed on 23 November 2023). The stimulus
set images are stored in the folder labeled “Urban image stimulus set” and are numbered
from 1–160. The data also include an Excel sheet named “Urban image stimulus set
variables” with columns that provide information on the variables associated with each
image, namely the image number, owner tag, photo ID (PID), secret tag, category (presumed
residents/tourists), bin number (one to eight, representing different ranges of the cell image
density), cell image density, cell green index, number of views, normalized popularity,
brightness, and contrast.

3. Methods

We developed our image stimulus set in a four-step process. The first step consisted
of extracting bulk geotagged urban environment images from the Flickr social media
platform (image extraction process). The second step involved determining four variables
associated with the images extracted in the first step (image variable determination). The
third step consisted of selecting images that depicted urban spaces with respect to our
four variables (image selection process). The fourth and final step involved assessment
of the brightness and contrast of the images selected in the third step (image brightness
and contrast assessment). We adjusted any images that had brightness and contrast values
beyond three standard deviations and did not discard any images during this step. We
describe each of these steps below, in greater detail.

3.1. Step 1: Image Extraction Process

We obtained images from the city of Lisbon (Portugal) that were posted to the social
media platform Flickr. To do this, we used the Flickr API and created a Python query to
search for geotagged images with respect to the date they were uploaded and the specific
location where the image was taken. Figure 1 depicts these input parameters, with the date
duration between 1 January 2016 and 29 September 2021 and the bounding box covering the
boundaries of the Lisbon municipality [search coordinates in WGS84: −9.23, 38.69, −9.09,
38.80; search area: 158.43 km2]. The above process resulted in 75,233 images taken in the
city of Lisbon. We retrieved the geotagged location, the information about the photographer
(owner id), and details related to the Flickr account (highest number of views, etc.); such
data extraction was the basis to determine the variables explained in the subsequent step.

https://osf.io/c79w5/
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Figure 1. Process for extracting 75,233 urban environment images from the Flickr website. We
selected images based on the input parameters (left) and determined the output variables (right) for
all images.

3.2. Step 2: Image Variable Determination

In this step, we determined the following variables for each of the extracted images
(see Figure 1).

3.2.1. Geotagging

All images extracted in Step 1 were geotagged. We, therefore, fetched each image’s
associated latitude and longitude coordinates.

3.2.2. Normalized Popularity

We calculated this variable by dividing the number of views for each image by the
highest number of views for any image that the photographer of the image had posted. In
this way, we created a normalized index score for the popularity of each image that ranges
from 0 to 1. For example, if the image in question had been seen by 100 people, and the
photographer’s most popular image had been seen by 1000 people, then 100/1000 = 0.1
normalized popularity score.
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3.2.3. Cell Image Density

We divided the entire 158.43 km2 search area of Lisbon into 100 × 100 m cells using
the Fishnet method in ArcGIS 10.7. Using each image’s geotag data, we calculated the total
number of extracted images in each 100 × 100 m cell included within the geographical
boundaries of the city of Lisbon. This provided a cell image density specific to each
cell—which reflects the total number of geotagged photographs shared by Flickr users in
the corresponding area of the cell during the specified time period. We then associated this
cell image density with each image that was taken within that cell.

3.2.4. Cell Green Index

We quantified the overall greenness of the cell by using the Normalized Difference
Vegetation Index (NDVI) [30]. NDVI measures the ratio of the difference in the red and near-
infrared portions of the spectrum to their respective sum. Healthy vegetation (chlorophyll)
reflects more near-infrared light than other wavelengths, but it absorbs more red light.
Thus, NDVI ranges from −1.0 to 1.0, with larger positive values indicating green vegetation.
Non-vegetated areas, including bare soil, open water, snow/ice, and most construction
materials, have much lower NDVI values [31]. The NDVI is preferred to the simple index for
global vegetation monitoring because it compensates for changing illumination conditions,
shadows, surface slope, and aspect, among other factors. NDVI has achieved good results
in detecting green cover, monitoring land surfaces and vegetation canopies, estimating leaf
area index, estimating grass cover vegetation biomass, and quantifying the percentage of
grass cover [32]. We employed satellite imagery from the Sentinel-2 data source and created
an NDVI map for the city of Lisbon in ArcGIS. We ensured accuracy by creating a synthesis
map that averages all months for each year (2016–2021). This provided a comprehensive
overview of vegetation changes in Lisbon over a six-year period. For instance, if an image
taken in 2016 shows an empty spot, but a building is constructed on that same spot by 2020,
using the NDVI from 2020 would not give an accurate reflection of the vegetation from
2016. We overlayed this map onto a grid of 100 × 100 m cells, and each cell and image
within it received the same green index value for the year it was photographed.

3.3. Step 3: Image Selection Process

Past research has focused on understanding the dynamics of spatial interactions
between residents and tourists and their implications on urban planning [33,34]. Thus, to
expand the scope of research that can be performed utilizing these images, we divided the
images into two categories: images photographed by residents and images photographed
by tourists. The following paragraphs describe our approach in performing this segregation
and the successive steps to select the relevant images depicting the urban spaces of Lisbon.

We segregated the 75,233 images obtained in Step 1 into two categories (presumed
residents or tourists) based on data from the photographer’s Flickr account (see Figure 2).
We assigned an image to the presumed resident category if the photographer’s Flickr
account uploaded images within our defined geographical boundaries in the city of Lisbon
for more than three consecutive months. Conversely, we assigned an image to the presumed
tourist category if the photographer’s Flickr account uploaded images for less than three
consecutive months. Of note, according to data published by the National Institute of
Statistics of Portugal (NISP) in 2020 [35], tourists stay an average of around three nights
in Portugal. Importantly, NISP provide this average stay datapoint without a standard
deviation value (s.d.) to calculate a threshold that could help us improve our residents vs.
tourists categorization (e.g., average + 3 s.d.). Thus, given the missing s.d., we adopted a
conservative categorization threshold of three months. To note, however, we acknowledge
that some residents’ photographs will likely be labeled as tourists’ (and vice versa). In
support of this, we have termed this categorization “presumed” residents and tourists
throughout this manuscript. In addition, it is important to clarify that we only considered
the number of unique days on which a Flickr user posted images, rather than the total
quantity of images they posted. Please see Figure 2 for a depiction of the cell image density
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distribution for the 75,233 images, as well as the images we categorized as photographed
by presumed residents (26,585 images) and presumed tourists (48,648 images).
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We next took further steps to refine our stimulus set by independently handling
images belonging to the presumed resident and tourist categories. All the analyses were
conducted using MATLAB R2022a. Firstly, we divided the images in each category into
eight bins based on cell image density (Figure 3A). Next, we aimed to select 10 relevant
images depicting Lisbon’s urban spaces for each bin in each category, which would result
in 160 total images (80 images for tourists and 80 images for residents). Importantly, we
intended to select an image set where our key image variables (popularity, cell image
density, and cell green index) were orthogonal to each other. We did this to help researchers
avoid collinearity effects when conducting future investigations with these image variables.
We achieved this with an iterative image selection process involving first plotting all images
in a bin and then subjecting individual images within the bin to an in-house algorithm
(Figure 3B). To explain in more detail, we first created a bivariate histogram with all images
in a single bin plotted according to their popularity and cell green index. Second, we
divided the histogram into three equal parts along the cell green index axis. We decided
to divide this axis into thirds of its original divisions after analyzing the histogram’s
distribution across all bins in both categories. For example, if the original divisions in the
histogram along the cell green index for a particular bin were 33, they were divided into
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three parts, 11 divisions each, for further steps. To note, before proceeding with this three-
part division, there were a small number of bins where the number of original divisions
along this axis was even, so we replotted the histogram by modifying the original division
number to the following odd number. Next, we randomly selected one image from each
part, obtaining three images in one complete iteration. We then ran four iterations of this
selection process to retrieve 12 distributed images from the bin we were working on. At
this step, we visually inspected the 12 images to confirm that they depicted urban spaces in
Lisbon. If some images were visually not appropriate (e.g., a close-up image of a face), we
removed them and, if needed, ran more iterations until we obtained 10 visually relevant
images for each bin. In a few bins with a high percentage of visually irrelevant images, we
had to manually select some images after our algorithm reached saturation (repeatedly
selecting irrelevant images). In these bins, our algorithm selected ~70% of the final images.
We stopped the process when we obtained 10 images for each bin.
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Figure 3. Process for selecting 160 urban environment images (80 each from the presumed resident
and tourist categories). (A) Segregating images based on cell image density into bins for both
presumed residents and tourists (B) Selecting each bin sequentially and feeding them to an in-house
algorithm to select 10 images per bin orthogonal in popularity and cell green index. This process
allowed for images distributed across our image cell density variable and assured that images were
not correlated with respect to our selected variables (popularity and cell green index).

To validate our selection process and confirm orthogonality between variables, we
used a MATLAB-based robust correlation toolbox [36] to conduct three different types of
correlations (Pearson, percentage bend, and Spearman) on the entire set of 160 images
(Figure 4). We also conducted these correlations on the presumed residents and tourists
category sets of 80 images each (Table 1). All correlations were weak and non-significant
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(p > 0.05), confirming the orthogonality between the output variables of popularity, cell
image density, and cell green index for the entire stimulus set (and also for each residents
and tourists category sets of images).
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Figure 4. Pearson, Bend, and Spearman correlation plots with the 95% bootstrapped confidence
intervals (shaded areas) for the entire set of 160 urban environment images. (A) Correlations between
cell image density and popularity, (B) correlations between cell image density and cell green index,
and (C) correlations between popularity and cell green index. For the bend correlation, red indicates
data bent in the variable on the x-axis, green in the variable on the y-axis, and black indicates data
bent in both variables.
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Table 1. Pearson, Bend, and Spearman correlation values with significance levels for correlation
among cell image density, popularity, and cell green index performed separately for the images
uploaded by presumed residents and tourists. For the identical analyses performed on the full set of
images, please see Figure 4.

Category Correlation Variables

Pearson
Correlation

Bend
Correlation

Spearman
Correlation

r p r p r p

Images by Presumed
Residents

Cell Image Density and Popularity −0.069 0.546 −0.061 0.588 −0.039 0.731

Cell Image Density and Cell Green
Index −0.122 0.281 −0.195 0.082 −0.212 0.06

Popularity and Cell Green Index −0.037 0.744 −0.098 0.387 −0.121 0.284

Images by Presumed
Tourists

Cell Image Density and Popularity −0.136 0.228 −0.149 0.188 −0.175 0.120

Cell Image Density and Cell Green
Index −0.092 0.419 −0.107 0.345 −0.040 0.724

Popularity and Cell Green Index −0.059 0.602 −0.096 0.394 −0.103 0.363

3.4. Step 4: Selected Images’ Brightness and Contrast Assessment

As part of the selection process, we also assessed the brightness and the root mean
square (RMS) contrast values for the 160 images [37,38]. For each image, we calculated the
image brightness by averaging the images’ RGB pixel values and the RMS contrast, which
is the standard deviation of the brightness values as follows:

Bavg =
1
N ∑N

k=1 Lk (1)

Crms =

√
1
N ∑N

k=1

(
Lk − Bavg

)2 (2)

where N is the total number of pixels, k is the pixel index, Lk is the pixel value, Bavg is
the average brightness value of an image, and Crms is the RMS contrast of an image. We
then estimated the mean and std. dev of these values in the entire set of 160 images and in
presumed residents and tourists category sets of 80 images each to check if they lay within
three std. dev from the mean. Barring the RMS contrast of one image belonging to the
presumed residents category, all the images’ brightness and contrast values satisfied this
criterion. After reducing the contrast value of this image by 12%, all values were within
three standard deviations from the mean for the entire set and separate sets of presumed
residents and tourists categories.

4. User Notes

We used the social media platform Flickr to create an urban image stimulus set of
the city of Lisbon. This image set is a unique and valuable resource that can help research
in a variety fields, such as understanding social media use and urban planning. The
dataset comprises 160 geotagged urban space images, and these images can be further
categorized into 80 images of presumed residents and tourists. In addition to latitude
and longitude information, we created variables/attributes associated with these images,
such as cell image density, cell green index, and normalized popularity. We conducted
robust correlations among these output variables to ensure their orthogonality in both the
overall dataset and the category subsets. Further, the brightness and contrast values for
the cumulative and within-category image set are within three standard deviations from
the mean.

The presented urban image stimulus set is helpful for studying and comprehending
different facets of urban settings, such as people’s perceptions, preferences, and behav-
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iors. For example, the stimulus set can be effectively used to assess urban perception
by seeking responses to factors such as valence, arousal, feelings of safety, etc. They can
also be combined with personality and mental health questionnaires. By leveraging this
combined methodology, researchers can better understand the complex dynamics between
physical spaces, individual characteristics, and digital behavior linked to urban spaces.
For instance, researchers can use the stimulus set to assess how much digital popularity
(measured by normalized popularity) overlaps with real-life location popularity (based
on people’s preferences and perceptions of the urban environment). This image set can
also be employed in neuroimaging experiments using techniques such as functional mag-
netic resonance imaging (fMRI) and electroencephalography (EEG) [39]. This approach
enables researchers to uncover the underlying neural mechanisms and cognitive processes
involved in perceiving urban spaces in Lisbon. For example, Chang et al. [40] used fMRI to
shed light on the neural mechanisms contributing to the positive mental health outcomes
associated with green spaces. In another study, Olszewska-Guizzo et al. [41] conducted a
study using EEG to examine the linkage between urban green spaces and mental health
outcomes. Our stimulus set includes a metric for measuring greenness called the cell green
index and other measurements that offer possibilities for investigating similar and varied
neuroimaging-based research questions.

Finally, researchers can combine data from neuroimaging experiments conducted us-
ing the urban image stimulus set with machine learning algorithms and explore promising
ways to identify patterns and predict future trends across various domains, including urban
planning, social media, and interventions in clinical populations. However, it is important
to acknowledge that while our set of stimuli covers a significant expanse of 158.43 km2

within Lisbon, other researchers can develop a similar set of stimuli encompassing a diverse
range of geographical regions for their respective studies. Further, it should be noted that
we divided the Lisbon region into cells of 100 × 100 m, and all images within each cell were
assigned the same cell green index and cell image density. Therefore, while a particular cell
may have a high level of greenery overall, certain images within that cell may contain less
or no green coverage.

It is important to note that the urban stimulus set is limited to a specific time frame
and is therefore static in nature. Future research holds the potential to enhance our un-
derstanding of urban dynamics comprehensively by integrating dynamic data sources
and leveraging the capabilities of both community-based geoportals and Spatial Data
Infrastructures (SDIs). These combined contributions form a holistic approach that benefits
both localized and broader perspectives on the urban environment [42,43]. In addition, it is
important to encourage future research in developing stimulus sets specifically tailored to
rural areas. This will enable valuable comparisons with urban settings and help uncover
unique challenges and opportunities. By doing so, targeted interventions can be created
to improve rural life and foster sustainable development. Despite the above points, our
urban image stimulus set can be very useful to researchers and contribute to developing
innovative solutions. Researchers can tackle complex environmental and social science
challenges by combining this stimulus set with self-reported evaluations, neuroimaging
methods, and advanced machine learning algorithms. Additionally, the output variables
included in this set allow for analysis of the intricate relationship between human behavior,
decision-making, social dynamics, and the environment.
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