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Communication Neuroscience: Theory, Methodology and
Experimental Approaches
Ralf Schmälzle 1* and Dar Meshi 2*

1Department of Communication, Michigan State University, East Lansing, USA; 2Department of Advertising and
Public Relations, Michigan State University, East Lansing, USA

ABSTRACT
The human brain is our primary biological organ of communication. The brain
acts as both the sender and receiver of messages and underpins our funda-
mental ability to communicate and interact with others. Communication
scholars can, therefore, study the brain to gain a more complete understand-
ing of communication phenomena. Our goal with the present manuscript is to
promote neuroscience research to communication scholars in the following
ways: (1) We provide rationale for studying communication from a neural
perspective. (2) We delineate the various advantages and challenges that
neuroscience methods present. (3) We describe three distinct methodological
entry points for communication scholars to approach the field. Specifically, we
illustrate how neuroscience measures can be incorporated into communica-
tion research as dependent variables, mediators, or predictors. We then close
with a forward-looking perspective on future developments in measurement,
analysis, and theory, which we expect will have a profound influence on
communication science.

The human brain is our primary biological organ of communication (Weber, Eden, Huskey, Mangus, &
Falk, 2015; Weber, Sherry, & Mathiak, 2009). The brain acts as both the sender and receiver of messages
and underpins our fundamental ability to communicate and interact with others. Communication
scholars can, therefore, study the brain to gain a better understanding of communication phenomena
(Boster & Sherry, 2010; Sherry, 2004). Historically, there has been momentum for this approach when
investigating speech, hearing, nonverbal communication, and media (Kempter & Bente, 2004; Lang,
2014; Reeves et al., 1985). More recently, with the advent of new methods to image the brain (see
neuroimaging below), there has been a strong movement promoting a neuroscientific approach across
the field of communication research. Several papers which capitalized on these neuroimaging methods
have appeared in communication journals (for review see Weber, Fisher, Hopp, & Lonergan, 2018), and
about twice asmany have appeared in psychology journals with topics that focus on core communication
questions (for review see Falk & Scholz, 2017; Meshi, Tamir, & Heekeren, 2015). The annual number of
these publications on communication topics is increasing, and in 2016, under the leadership of René
Weber, an interest group for Communication Science and Biology (CSaB) was founded within the
International Communication Association. This growth trend is also reflected in the strategic hiring
decisions of leading communication departments around the world, where over 10 professors with
a neuroimaging research agenda have been hired in the past 5 years. Thus, while measuring brain activity
has not been considered a classical research tool of the communication discipline (Craig, 1999), we are
witnessing the birth of a new approach to communication inquiry: Communication Neuroscience.
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Importantly though, the neuroscience theory and methods used to investigate human commu-
nication are complex, and this can lead to miscommunication about what neuroscience research can
and cannot achieve. Our goal here is to provide a theoretical perspective on the role of neuroscience
research in communication science and to communicate the benefits and barriers to conducting this
research in a systematic way (DeAndrea & Holbert, 2017). We advocate for communication scholars
to embrace this new paradigm to describe, explain, and predict communication phenomena, but
with the caveat that the contribution of neuroimaging may come in different forms than what
newcomers might expect.

Rationale for Studying Communication from a Neural Perspective

The emergence of Communication Neuroscience is part of a larger development of interdisciplinary
science in the 21st century. This development is characterized by (1) combinations of historically
disconnected disciplines, across hierarchical levels of explanations (e.g., Churchland & Sejnowski,
1990; Cacioppo, Berntson, et al., 2000), (2) refined measurement and appreciation of the resulting
increase in complexity (e.g., Barabási, 2012; Weber et al., 2009), and (3) an emphasis on mechanistic
explanation as opposed to covering-law-based approaches (e.g., Craver, 2007). The field of biochemistry
provides an exemplar that illustrates this development for communication scholars. Before biochemistry
came into being, biologists interested in the principles of “living matter” often invoked constructs like
vitalism, which posits that living phenomena cannot be fully explained by the principles of basic sciences
like physics and chemistry (Greco, 2005). Vitalism and its relatives ultimately did not provide solid
explanations. The early chemists, however, could not explain these phenomena either because the basic
elements they knew from the periodic system proved to be too simplistic. It was only when the amino
acids and their role in DNA were discovered that the link between the two fields began to make sense:
theories became aligned, they made extremely precise predictions, practical control of compounds
became possible, and industrial applications flourished. Viewed from today’s perspective, we can see
that the early biologists had approached the problem from a level which could be described as “too high”,
whereas the early chemists had entered the field on a level which could be described as “too low” (Bechtel,
2008) – one can imagine these two fields existing on horizontal planes, with a gap in between.
Importantly, however, the new field of biochemistry offered the right level of granularity to explain
the mechanisms governing the behavior of organic molecules. Therefore, biochemistry filled the gap
between the two planes. At the same time, both biology (e.g., systems biology) and chemistry (e.g.,
quantum chemistry) continued to exist and thrive.

The field of cognitive neuroscience is also a merger between two fields, neuroscience and psychol-
ogy. Cognitive neuroscience is currently on a trajectory similar to biochemistry in the 20th century. For
example, the field has established independence from its source disciplines and it has formed a new
research community along with specialized journals, conferences, and recognition by funding bodies
(e.g., a dedicated NSF Cognitive Neuroscience program). Cognitive neuroscience advocates for
a theoretical middle-ground between neuroscience and psychology by “elevating” the neuroscientists’
focus from single neurons and “lowering” the psychologists’ focus on hypothetical constructs that have
always remained somewhat mentalistic in nature (Slaney & Racine, 2013). We note, however, that this
endeavor proves more challenging than the illustrative example of biochemistry because it cuts right to
the core of the mind-body problem, which has caused many philosophical controversies. The mind-
body problem consists of debate on whether (or the extent to which) biological substrates enable or
comprise the human mind (Cummins, 2000; McGinn, 1989). Progress made to date in cognitive
neuroscience has already substantially increased our understanding of cognitive phenomena (Engel,
2008; Mather, Cacioppo, & Kanwisher, 2013). More broadly, the theoretical confluence between
neuroscience and cognitive science/psychology proves as one of the most fertile areas of scientific
progress these days (Hassabis, Kumaran, Summerfield, & Botvinick, 2017).

These developments in cognitive neuroscience, and its two closest allies – social and affective
neuroscience – have implications for communication or at the very least for communication
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subfields that make claims about mental processes. Although the quirks of the mind-body problem
make it sometimes tempting to view the realm of mental and social phenomena as separate from the
physical, chemical, and biological domains, there is overwhelming evidence that this “dualism” has
led science astray (Dennett, 1991, 2017), and that the complex social phenomena that we aim to
explain in communication science are rooted in and affected by biological mechanisms that have
been strongly shaped by evolution. This includes attachment and procreation behaviors (Harlow,
1958; Insel, 2010); nonverbal interaction patterns; information-sharing systems (from birdsong to
language; Ghazanfar, 2002); social perceptions, inferences, and preferences (face reading, theory of
mind, impressions of attractiveness; Lieberman, 2010); moral systems (Wright, 1995); and hierarch-
ical social structures (Tooby & Cosmides, 1992; Zerubavel, Bearman, Weber, & Ochsner, 2015), to
name only a few. With this biological perspective in mind, truly understanding human commu-
nication requires us to study it from a multi-level perspective that jointly focuses on the biological
processes, that is the brain activity, as well as the social behaviors they produce (Adolphs, 2009;
Brothers, 1990; Cacioppo, Berntson, Sheridan, & McClintock, 2000; Cappella, 1996; Krakauer,
Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017; Ochsner & Lieberman, 2001; Stanley &
Adolphs, 2013).

Neuroimaging: Capturing Communication’s Hidden Processes

The term “neuroimaging” describes the measurement of brain activity. With neuroimaging, we can
look into the “black box” of the human brain (Bolls, Weber, Lang, & Potter, 2019; Geiger & Newhagen,
1993; Schramm, 1971; Weber et al., 2009) to investigate theories about communication phenomena.
Different neuroimaging methods can be used to measure brain activity, such as electroencephalogra-
phy (EEG), magnetoencephalography (MEG), functional near-infrared spectroscopy (fNIRS), and
functional magnetic resonance imaging (fMRI). The specific details of how these methods assess
neural activity are beyond the scope of this article and are discussed extensively elsewhere (Baars &
Gage, 2012; Gazzaniga, 2009; Huettel, 2008; Luck, 2005). What all these methods have in common,
however, is that they take moment-to-moment measurements simultaneously across different brain
sites. Hence, they provide spatiotemporal data that are able to reveal which brain regions are active, or
the interactions between regions, at specific timepoints. In addition, it is important to mention that
different methods can measure different phenomena related to the firing of neurons in the brain –
some methods directly measure electrical brain activity, while other methods indirectly measure brain
activity. For example, the actual electrical activity of firing neurons is recorded with EEG and MEG
(Biasiucci, Franceschiello, & Murray, 2019; Gross, 2019). Alternately, changes in blood flow around
firing neurons are recorded with fNIRS and fMRI (Huettel, 2008; Logothethis, 2008). Regardless of the
measurement, the result is similar, each of these techniques creates an “image” of the brain activity that
it is recording – hence, the term neuroimaging is used. In the discussions below, we focus mainly on
fMRI because it has been the most widely used method for recent breakthroughs, but the general
principles we discuss extend to other methods.

Neural measures have specific advantages over more established behavioral methodologies in
communication research (but also limitations that we will describe below as well). First, this type of
data collection does not require the explicit questioning of a participant. Therefore, the measurement
itself does not interfere with the thought process that is measured, for example, by (1) interrupting
the experience, (2) by evoking specific thoughts through the questioning itself, or (3) by requiring
attention allocation for answering questions. Second, neuroimaging measures are process-based
biological signals that can be recorded continuously. This temporal dimension is indispensable for
studying communication processes but is often absent with other methods (Poole, 2013). Third, just
as neuroimaging circumvents the need for overt questions, the “answers” (i.e., the recordings from
individual brain regions) are not verbally filtered either. This feature is critical for studying processes
that are detached from the language system, which is the case for most phenomena related to
emotion, motivation, and other implicit processes (Lieberman, 2000). As such, neural measures can
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better bypass social desirability bias and are not subject to retrospective distortion, which are both
major concerns in self-report (Stone, Bachrach, Jobe, Kurtzman, & Cain, 1999). It is important to
note though, that measurement with fMRI can introduce confounds as well. For example, the noise
of the fMRI machine, or the relatively snug space within the machine, may induce cognition that
researchers do not intend to measure. Overall, however, neuroimaging has many desirable measure-
ment characteristics and thus holds potential to advance the discipline as a whole (Greenwald, 2012).

Finally, it is also important to note how current neuroimaging methods are distinct from classic
psychophysiological methods. Psychophysiological methods measure physiological responses (e.g.,
heart rate) that result from nervous system activity (Potter & Bolls, 2011), and these methods also
possess the three, above-described advantages of neuroimaging methods (Lang, Bradley, Chung, &
Lee, 2003; Lang, Potter, & Bolls, 2008). Psychophysiological methods have a long history in com-
munication research, promoting a biological and information-processing approach to our discipline
(Kempter & Bente, 2004; Lang, 2014; Potter & Bolls, 2011; Ravaja, 2004). Neuroimaging can be
viewed as an extension of this endeavor. Importantly, however, neuroimaging reveals the location
and intensity of brain activity. Therefore, neuroimaging can directly expose the inner workings of
the brain as it is responding to or producing communication. In this way, neuroimaging methods are
able to capture communication phenomena where they arise.

Extant Neuroimaging Research into Communication Phenomena

Neuroimaging research has already substantially contributed to our understanding of communication
phenomena. Here, we provide a very brief and selective overview of areas in which contributions have
been made. Of note, most of this research connects the planes of the communication and neuroscience
fields, and the resulting studies were published in neuroscience and psychology journals, beyond the
surveillance of many communication scholars. First, research has revealed how the brain perceives
when others display or send out social communications. Since the seminal discovery of a brain area
that is sensitive to faces – the so-called fusiform face area (Kanwisher, 2017; Kanwisher, McDermott, &
Chun, 1997) – work on processing faces, facial expressions and emotion, body posture, biological
motion and actions, touch and many other static and dynamic nonverbal social signals has rapidly
expanded. Overall, this has led to substantial knowledge about the brain regions involved in social
perception (Jack & Schyns, 2017; Lieberman, 2010, 2013). Next, in parallel work, neuroscientists have
explored the minutiae of speech perception and production, including the socially important functions
of voice and prosody detection (Ethofer, Van De Ville, Scherer, & Vuilleumier, 2009; Hensel,
Bzdok, Müller, Zilles, & Eickhoff, 2015; Hickok & Poeppel, 2016; Petkov et al., 2008). Third,
neuroscientists have focused on understanding how we think about and respond to others while we
interact. Termed “social cognition” in the literature, research has revealed brain regions, such as the
temporoparietal junction, involved in making inferences about others’ mental states (Alcalá-López
et al., 2017; Saxe & Kanwisher, 2003; Schmälzle, Brook O’Donnell, et al., 2017; Schurz, Radua,
Aichhorn, Richlan, & Perner, 2014), as well as when we have empathy for others, or make social
and moral judgments (Stanley & Adolphs, 2013), or observe others’ actions (Caspers, Zilles, Laird, &
Eickhoff, 2010; Schilbach et al., 2013). Several social neuroscience studies have also been conducted to
understand social-affective phenomena such as social exclusion, self-related processing, social compar-
ison, or social reward (Doré & Ochsner, 2015; Eisenberger, Lieberman, & Williams, 2003; Fliessbach
et al., 2007; Meshi, Morawetz, & Heekeren, 2013; Northoff, 2014; Saxe & Kanwisher, 2003; Schmälzle,
Brook O’Donnell, et al., 2017). Cutting-edge work has also been done in perhaps one of the most
central areas of communication research – interpersonal communication. A recent technological
advancement allows researchers to record neuroimaging data from two brains during ongoing inter-
action, making it possible to study the dyadic interaction between two physically separated brains. Such
research has revealed commonalities in brain activity between senders and receivers during successful
message transmission (Babiloni & Astolfi, 2014; Schilbach et al., 2013; Stephens, Silbert, & Hasson,
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2010). These studies demonstrate that profound neuroscience research examining communication
phenomena has already taken place – although most have been labeled as “social neuroscience”.

While the above examples were primarily conducted outside the communication discipline, an
increasing body of research shows how neuroimaging can be applied within core communication
contexts. For example, researchers have examined the reception and processing of health and
risk communication messages (Cascio, Dal Cin, & Falk, 2013; Cooper, Bassett, & Falk, 2017; Imhof,
Schmälzle, Renner, & Schupp, 2017; Langleben et al., 2009; Ramsay, Yzer, Luciana, Vohs, &MacDonald,
2013; Schmälzle, Häcker, Renner, Honey, & Schupp, 2013; Schmälzle, Renner, & Schupp, 2017; Wang
et al., 2013; Weber, Huskey, Mangus, Westcott-Baker, & Turner, 2015), as well as responses to mass
media, political communication, and computer-mediated communication (Huskey, Craighead,Miller, &
Weber, 2018; Klasen, Zvyagintsev, Weber, Mathiak, & Mathiak, 2008; McKnight & Coronel, 2017;
O’Donnell et al., 2015; Schmälzle, Häcker, Honey, & Hasson, 2015). Other studies have investigated
social media use (Baek, Scholz, O’Donnell, & Falk, 2017; Meshi et al., 2016, 2013; Scholz et al., 2017) or
the interplay between brain function and social network variables (Falk & Bassett, 2017; Schmälzle,
Brook O’Donnell, et al., 2017). Finally, a host of studies exists on the neuroscience of video-game play
(Huskey, Wilcox, &Weber, 2018; Kühn et al., 2011; Mathiak &Weber, 2006), neurocinematics (Hasson
et al., 2008; Hasson, Nir, Levy, Fuhrmann, & Malach, 2004), and virtual reality (Pfeiffer et al., 2014;
Schilbach et al., 2010; Wilms et al., 2010). These pioneering studies demonstrate that neuroscience holds
promise to “speak to” and “receive input from” almost every subfield of communication (Huskey et al., in
press).

The Barriers and Challenges of Communication Neuroscience

Although we advocate that more communication scholars can integrate neuroimaging methods into
their research, there are several barriers to entry (e.g., Hopp & Weber, in press; Weber, Mangus, &
Huskey, 2015). Here, we provide detail on two general challenges: (1) operational challenges, such as
the practical burdens of cost, time, and training, and (2) theoretical challenges, such as incommen-
surability between paradigms, which can result in institutional inertia and resistance. By describing
these barriers and how to navigate them, we achieve a key goal of this article, which is to provide
guidance and affirmation to aspiring communication neuroscientists.

Several operational challenges need to be addressed when communication scientists adopt
neuroscience approaches. One key operational barrier consists of acquiring the appropriate training
to conduct this research. This includes knowledge in neuroanatomy, methodological skills, compu-
tational skills, neuroscientific theories, and other general competencies. Training in neuroanatomy
can be achieved with reading and/or coursework. Several excellent books cover general neuroanat-
omy (i.e., the brain’s geography) (Nieuwenhuys, Voogd, & van Huijzen, 2013) and functional
neuroanatomy (Nolte, 2002). In addition, there are dedicated neuroscience courses, though typically
offered outside communication departments (i.e., neuroscience or psychology departments). Next,
although neuroimaging has the reputation of being complicated, our own experience from teaching
several undergraduate and graduate introductory courses shows that, with some dedicated effort,
communication students can learn the nature of what is being measured and how it is measured.
After all, the core concepts of biological measurement do not differ between neuroimaging and
established psychophysiological approaches (Cacioppo, Tassinary, & Berntson, 2000; Potter & Bolls,
2011). Granted, neuroimaging involves technical jargon, but once students are familiarized with the
meaning of these terms, they are able to proceed, much in the same way that current non-
neuroscience communication students acquire knowledge of statistics and how to set up online
surveys, or learn to scrape data from social media postings. In sum, if one is committed to master
this new approach, then one can certainly do it.

Another operational barrier to entry is the logistics of engaging in communication neuroscience
projects, for example, in terms of costs, duration, and labor. Regarding costs, if choosing to use fMRI to
collect data, access to scanners is limited and researchers will need to pay around $600 per hour in the U.S.
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Often, each study participant requires at least 1 hour of scanner time, andwith sample sizes usually between
30 and 60 individuals, experimental costs are higher than the usual costs in communication research (e.g.,
surveying students). Also, sample sizes in fMRI research continue to increase and debate is ongoing
regarding correct sample sizes with certain experimental designs (Turner, Paul, Miller, & Barbey, 2018).
Practically, this means that researchers need grant support if they want to collect primary fMRI data.
However, possibilities for secondary data analyses are abundant as neuroimaging is currently undergoing
a data-sharing revolution. Several large-scale fMRI datasets have already beenmade available. For example,
efforts like the Human Connectome Project and the Human Brain Project, as well as large-scale clinical
initiatives on autism, ADHD, and datasets during movie viewing are paving the way for population fMRI
studies (Falk, Berkman, & Lieberman, 2012). These datasets will become the neuroimaging equivalent of
large-scale survey research that are currently standard and widely used across the social sciences. This
situation createsmany opportunities, especially for researchers whomay lack funding or resources for their
own data collection. When researchers can use secondary data to address novel theoretical questions and
employ state-of-the-art reproduciblemethods (e.g., VanHorn&Gazzaniga, 2013;Weston, Ritchie, Rohrer,
& Przybylski, 2019), then the researchers, the field, and the taxpayer all benefit.

Another operational challenge to collecting neuroimaging data is the time required to complete
a study – from start to finish, a single neuroimaging study often takes 1–2 years. This is because
recordings have to be done on an individual basis and analysis can be lengthy – neuroimaging data
require intensive and specialized preprocessing and usually several approaches to analysis are taken.
This makes communication neuroscience studies much more slow-paced than other communication
studies, and they, therefore, require added investment in doctoral training. In support of this,
postdoctoral positions are the norm in neuroscience and psychology, because it takes a number of
years to conduct research and receive this specialized training, but postdoc positions are rare in
communication. Furthermore, PhD’s in communication tend to be shorter, allowing for less
opportunity to publish if focusing on neuroimaging studies. This potential reduced output could
then negatively impact graduate students’ career opportunities as they finish their degree and intend
to move on to faculty positions. The field needs to be very aware of these important practical issues
or it will run risk of losing connection with this emerging field.

We now discuss theoretical challenges in embracing a communication neuroscience approach,
which are arguably the most prominent difficulty. Researchers encounter this difficulty when trying
to align theories in communication and neuroscience. Communication Neuroscience is an inher-
ently interdisciplinary and integrative endeavor, and therefore these challenges emerge at the
intersection between established paradigms of communication and neuroscientific inquiry (Kuhn,
2012). Although excellent theoretical introductions to neuroscience exist (Gazzaniga, 2009; Kandel,
Schwartz, & Jessell, 2000), including introductory neuroscience textbooks for course adoption
(Ward, 2015, 2016), it is fair to say that researchers who want to embrace a communication
neuroscience approach will face existential “incommensurabilities” (Kuhn, 2012). In particular,
a key source of misunderstanding is that traditional neuroimaging methodologies cannot perform
“mind-reading” to answer questions like “what is the content of a person’s thoughts or feelings?”
This crucial misunderstanding, which we believe is still surprisingly widespread in communication,
occurs because of the human tendency to make, what cognitive neuroscientists call, reverse infer-
ences (Cacioppo, Tassinary, et al., 2000; Poldrack, 2006). To address this issue, we will next describe
in detail what reverse inference means and how to avoid it.

Reverse Inference: The Problem of Connecting the Results of Multiple Studies

Before we can illustrate the fallacy of reverse inference, we will first introduce the notion of standard,
forward inference in neuroimaging. Imagine an fMRI study that attempts to answer “which brain
region is involved in the feeling of love?” To do this, researchers could put a group of people in an
fMRI scanner and show them pictures of people they love – assuming that an individual feels love
when they see the person they love – and pictures of familiar people that they do not love.
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Importantly, all other variables between these two conditions of pictures would be held constant,
such as familiarity and trust with the people depicted in the images, as well as image characteristics,
like contrast and brightness. As a result, the independent variable that is manipulated is love, and the
dependent variable is brain activation. After collecting data, the researchers can statistically compare
brain activation when participants looked at loved ones versus looking at familiar others, revealing
brain regions that are involved in processing love. Of note, a variation of this study was actually
already conducted almost two decades ago, revealing such brain regions as the caudate, hippocampus
and insula (Bartels & Zeki, 2000). To sum up this approach, in traditional neuroimaging research,
investigators want to know what a brain region is doing, so they manipulate a stimulus, thought or
feeling as the independent variable of the experiment and reveal the effect of this manipulation on
the dependent variable, that is regional brain activity. These findings from the study are generalized
through statistical forward inference (for example, please see Figure 1).

Now let’s consider a case of reverse inference, which can occur when another study, with
a different independent variable, uses forward inference to reveal an identical/overlapping brain
region. Imagine a team of researchers conducted an fMRI study that attempts to answer “which
human brain region is involved when seeing one’s iPhone?” To do this, the researchers recruit
a group of iPhone owners and show them images of iPhones, similar to the study above about love.
Specifically, the independent variable manipulated in this study is seeing iPhones, and the dependent
variable is brain activation. After collecting data, researchers analyze brain activation when partici-
pants looked at iPhones, revealing brain regions involved in processing these images. A forward
inference can be made, in that the brain regions revealed by this analysis are active in the population
of iPhone owners around the world when they see iPhones. Similar to the above example, a variation
of this study has actually been done (Lindstrom, 2011) and it revealed that the insula, and other
brain regions, are more active when viewing videos of iPhones ringing. So far this is an appropriate
forward inference, namely that the insula and other regions in iPhone owners are involved in
processing images of iPhones. Critically, the attentive reader may have noticed that the results
from this study – insula activation – overlap with the above study on love. Now the temptation to
make a “reverse inference” becomes quite strong, namely to link the independent variables of the two
studies – love and iPhones – to claim that the brain data demonstrate that people love their iPhones.
The person who conducted the iPhone study did, in fact, make this reverse inference between the

Figure 1. Examples of forward and reverse inference. (a) Various stand-alone studies have investigated cognitive processes
(independent variable) while measuring brain activation (dependent variable) to reveal the involvement of the insula in each
process. Solid lines depict the appropriate forward inference conclusions from these studies, which is that the insula is involved in
all of these types of cognition/perception. (b) When a study (e.g., on iPhone perception) reveals an overlap with other studies in
regard to the dependent variable, in this case the insula, it is tempting to make an incorrect reverse inference. Dotted lines depict
these inappropriate reverse inferences with respect to the iPhone study. These reverse inferences are incorrect because a link can
be drawn to all other cognitive processes previously investigated that revealed the same brain region. Therefore, we cannot
conclude if people love, fear, or are disgusted by their iPhones.

COMMUNICATION METHODS AND MEASURES 7



two studies and the article he wrote for the New York Times conveyed this conclusion, titled “You
love your iPhone. Literally.” (Lindstrom, 2011). For illustration of this reverse inference, please see
Figure 1.

However, does this overlap in insula activation really mean that people love their iPhones? No, it
does not, and a group of prominent neuroimaging researchers responded to and criticized the
New York Times piece (Poldrack, 2011). This is because the independent variable in the iPhone
study was not love, it was viewing iPhones, and one-to-one mappings between brain regions and
mental states are extremely rare – the norm is that one brain region is involved in many processes (a
one-to-many mapping) so choosing to conceptually link back to the investigated mental state
(independent variable) of a previous study with an overlapping dependent variable (e.g., insula
activation) is incorrect (Cacioppo, Tassinary, et al., 2000). For example, many fMRI studies have
revealed the insula to be active in response to a wide variety of stimuli, thoughts or feelings that were
manipulated as the independent variable in each study, such as disgust, fear, pain, anxiety, decision-
making, speech generation, hearing and more (for review Uddin, Nomi, Hébert-Seropian, Ghaziri, &
Boucher, 2017). Therefore, one could easily have made the same reverse inference link between the
iPhone study and disgust, and claimed that because the insula is active when viewing iPhones and
also when experiencing disgust, people are disgusted by their iPhones. Equally plausible, one may
rely on the association between fear and insula activity, and claim that people are afraid of their
iPhones. It becomes clear that when we make reverse inference claims, linking the independent
variables of two, separate neuroimaging studies because of a similar finding with the dependent
variable (e.g., overlapping brain region), we get into murky waters.

The human tendency to make reverse inferences drives much of the above-mentioned misunder-
standing about the role neuroimaging can play in communication science. The issue occurs, in part,
because even the most advanced neuroimaging methods, such as fMRI, have limited spatial resolu-
tion – and thus cannot determine the exact neurons that are firing, but only larger clusters of
thousands of neurons. So one study about love finds, for example, the three brain regions mentioned
above – the caudate, hippocampus and insula – and another study, with a different independent
variable, could also find the insula, along with several other regions. Then, there is an overlap in
findings at the insula and this tempts researchers to draw an incorrect link between the independent
variable in these two studies.

This concept of reverse inference is crucially important for understanding what neuroimaging can
and cannot do, and how it can advance communication theory. Currently, one cannot design
a traditional neuroimaging study and expect to know what people are thinking or feeling by
interpreting the dependent variable – the brain region that is revealed as active – as this would
require reverse inference. In most cases, conclusions cannot be made by linking one’s neuroimaging
findings to other independent studies that came before. There are notable exceptions, however. For
example, using previous neuroimaging publications, a Bayesian probability can be calculated which
reveals the likelihood that if regional brain activation is observed, a certain mental state was present –
therefore obtaining the elusive one-to-one mapping of brain region activation and mental state
mentioned above. This has been done, for example, with the nucleus accumbens and rewards (Ariely
& Berns, 2010). The nucleus accumbens is a small brain region contained within a larger region
called the ventral striatum (Haber & Knutson, 2010), and numerous studies have shown that the
receipt of a reward activates the nucleus accumbens/ventral striatum (Clithero & Rangel, 2013).
Ariely and Berns used Bayesian statistics to calculate that there is a 90% chance, if one observes
nucleus accumbens activity in a study, that the study participants were rewarded. Without this type
of Bayesian calculation based on myriad previous papers, however, a reverse inference is not
possible. So, for example, if one wanted to investigate media effects by showing Instagram images
to individuals in the scanner, and this revealed activity in the insula, this researcher would not be
able to conclude what the participants were thinking or feeling when viewing these images. This
researcher would, however, be able to claim that the insula is involved in the processing of
Instagram-posted media images, whereby the arrow of causality goes from the presentation of the
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images to the activity in the brain. In sum, misunderstanding of this critical reverse inference issue
can result in a mismatch of expectancies about what communication neuroscience can provide, and
what other fields of communication want. Despite these important caveats, neuroimaging has the
potential to markedly advance communication science, as we describe in the next section.

Approaches to Improve Explanation and Prediction of Communication Phenomena

Communication science aims to provide an explanation and/or prediction of communication
phenomena. Pioneering work in communication neuroscience, such as the studies mentioned
above, has already contributed to this endeavor. The next generation of communication scholars
can build on this groundwork by capitalizing on three different approaches for using neuroimaging
to test or expand communication theory. These approaches differ by the conceptual role that the
neural measures take in the study: (1) that of a dependent variable, (2) that of a mediator/moderator,
or (3) that of a predictor. These approaches align well with those already taken in communication
science with other forms of data. In the following section, we introduce each approach and provide
examples of how they can be implemented, as well as what communication scholars can learn from
their implementation.

The Brain as a Dependent Variable

First, if one’s primary goal is to understand how the brain responds to and processes communication
phenomena, then researchers can take the “brain as dependent variable” approach (Figure 2a). This
approach uses neuroimaging to test hypotheses about underlying neural correlates of communication
(Huettel, 2008), and it is exemplified above with the study about “love”. By using “love” as the independent
variable and measuring the effect of its manipulation on brain activity, this approach can reveal brain
regions or networks involved in specific thoughts, emotions and perceptions (e.g., most communication
phenomena). In other words, the goal of these brain-as-DV studies is to identify the “who, what, when,
where and how” concerning the brain and particular thoughts, emotions or perceptions. During the early
days of neuroimaging, researchers primarily used this approach to “map out” how different brain regions
respond to manipulations, for example, in response to various perceptual (e.g., brightness), cognitive (e.g.,
decision-making), or emotional (e.g., love) phenomena. Research of this sort still comprises the majority of

Figure 2. Examples of the different ways that communication researchers can capitalize on neuroimaging data. Neuroimaging
data can help explain communication phenomena by serving as (a) a dependent variable, (b) a mediator/moderator, and as (c)
a measure to predict communication outcomes.
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studies in cognitive, affective, or social neuroscience. Of note, different neuroimaging metrics can be used
to apply the brain-as-DV approach, such as regional brain activity, connectivity between regions, or inter-
subject correlations (Huskey et al., 2018; Meshi et al., 2013; Schmälzle et al., 2013). Importantly, these same
measures can also be used to apply the other below-described conceptual approaches (i.e., brain-as-
mediator, brain-as-predictor). Studies taking a brain-as-DV approach typically have titles like “Neural
correlates of…” and then they list the perception, cognition or emotion that was studied. The findings of
these studies contribute to an ever-growing knowledge base about how the brain responds to psychological
manipulations. In fact, by aggregating data across many studies, it has even become possible to establish
meta-analytic platforms that continue to grow as more work is published (Fox & Lancaster, 2002; Yarkoni,
Poldrack, Nichols, Van Essen, & Wager, 2011).

Combining Computational Models with Neural Data: Insights into Hidden Processes
Despite the enormous growth of neuroimaging and the cumulative body of knowledge it provides,
some critics have found this approach unsatisfying (Coltheart, 2013). These critics argue that such
“brain mapping” studies contribute little to theory, or at least do not provide the sort of contribu-
tions they would like to see (e.g., Uttal, 2015). More advanced forms of neuroimaging, called
computational or model-based neuroimaging, strive to overcome such criticisms. Specifically,
these approaches relate the measured brain activities to parameters (internal variables) of formal
computational models.

To give an example, we return to the brain region we mentioned above when discussing reward
processing, the ventral striatum. Many studies have demonstrated that rewards activate the ventral
striatum (Clithero & Rangel, 2013). This is done, for example, by comparing brain activity while
rewarding stimuli are presented (i.e., winning money) to brain activity while neutral control stimuli are
presented. As discussed above, such designs enable a forward inference, namely concluding that
winning money activates the ventral striatum. Beyond such descriptive statements, however, psycho-
logical theories strive for deeper explanations especially regarding how reward outcomes are computed
to result in learned associations over time. Standard theories of reward learning, going way back to the
classical models of Rescorla and Wagner (1972), posit that: (1) the brain makes an actual computation,
called a reward-prediction error, which is the quantifiable difference between the actual reward amount
and the amount one had expected, and (2) that learning depends on the size of the reward prediction
error (termed error- or difference-based learning). Importantly, models of reward learning have been
mathematically formalized so that they include numerical values of latent cognitive variables (like
reward prediction errors, which is often denoted as delta). This is an important improvement
compared to most psychological theories that stay at a verbal-descriptive level. In a computational,
model-based neuroimaging study of reward learning, one can, therefore, use the trial-by-trial predic-
tions for such a latent reward-prediction error variable and test whether and/or where it correlates with
the measured brain activity. Of note, strong evidence implicates the neurotransmitter dopamine and
the ventral striatum in these functions (Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006; Schultz,
Dayan, & Montague, 1997). In this way, the computational model provides a bridge between
behavioral and neural data. Using neuroimaging in this manner arguably gets us much closer to
answering the question of “how” brain activity gives rise to cognitive phenomena (Forstmann &
Wagenmakers, 2015; O’Reilly & Mars, 2011; Palmeri, Love, & Turner, 2018).

This computational neuroimaging approach represents an advanced subtype of the brain-as-DV
approach and holds great promise to advance communication theory. For example, the concept of
reward prediction errors not only stimulated much research on reinforcement learning within
cognitive and affective neuroscience, but it has inspired work in social neuroscience (Cheong,
Jolly, Sul, & Chang, 2017; Hackel & Amodio, 2018; Stanley & Adolphs, 2013). For example,
computational, model-based neuroimaging has been used to study how we learn vicariously through
observing others (Burke, Tobler, Baddeley, & Schultz, 2010; Olsson, Nearing, & Phelps, 2007), or
how the brain keeps track of social norm violations (Zinchenko & Arsalidou, 2018) – both of which
are central topics within the communication discipline. Similarly, the general notion of difference-
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based computation features prominently in theories of social comparison (see Luo, Eickhoff, Hétu, &
Feng, 2018 for neuroimaging studies) and could easily be extended toward Expectancy-Violation-
Theory in interpersonal contexts (Burgoon & Hale, 1988), although we are not aware of any studies
to date. Within the domain of persuasion, relatively well-specified theories like Social-Judgment
Theory (Sherif, Sherif, & Nebergall, 1965) and Information-Integration Theory (Kaplowitz, Fink,
Armstrong, & Bauer, 1986) are likewise promising candidates for computational studies. Overall,
although the level of formalization of socially focused theories still lags behind that of other areas,
particularly the highly advanced models that exist in visual neuroscience (e.g., Engel, 2008; Itti &
Koch, 2001; Kriegeskorte & Douglas, 2018; Wu, David, & Gallant, 2006), we expect that
a computational approach to communication neuroscience can make key contributions on phenom-
ena that have henceforth remained elusive. In summary, the brain-as-DV approach can build the
necessary bridge between neuroscience and communication. Communication scholars can use this
approach to specifically answer questions about the brain in regard to communication phenomena.
Thus, this approach is useful across many subfields of communication research.

The Brain as a Mediator

Second, researchers can take the “brain as mediator” approach (Figure 2b). In this type of research, one
can ask if a specific brain activity mediates a particular relationship between two communication-
relevant concepts (Falk, Cascio, & Coronel, 2015). Statistical mediation analyses are very common
across the social sciences and generally regarded as a tool to identify processes and explain mechanisms
between the input and output variables of a system (Baron & Kenny, 1986; O’Keefe, 2003; Spencer,
Zanna, & Fong, 2005). For example, a psychological variable obtained by the survey may be identified
as a statistical mediator of two communication input and output variables. Importantly, this relation-
ship can be improved upon using neuroimaging measures because, logically, it must be the brain that
mediates communication input and output variables, as all thoughts and actions arise from brain
activity. Therefore, brain-as-mediator studies can be performed to reveal specific brain mechanisms
that account for the link between input and output. For instance, this approach has been productive in
studying the brain mechanisms that mediate the input of painful (nociceptive) stimuli and subjective
reports of pain; this approach identified particular regions of the anterior cingulate cortex and the
periaqueductal gray as key neural mediators (Geuter et al., 2018). To illustrate how a brain-as-mediator
approach can be taken in a communication context, we consider the following example. There is some
evidence suggesting that reading literary fiction improves theory of mind performance (Kidd &
Castano, 2013; Mar, Oatley, & Peterson, 2009). In parallel, ample evidence points to the so-called
mentalizing network – a set of brain regions that includes the temporoparietal junction – as a brain
system that is involved in inferring the mental state of others (Saxe & Kanwisher, 2003; Schurz et al.,
2014). Thus, one may assume that training theory of mind via fiction-reading should also be
represented by changes in the brain – similar to the effects that learning a motor skill (e.g., playing
piano) has on the brain’s motor system (Bassett, Yang, Wymbs, & Grafton, 2015; Dayan & Cohen,
2011). To test this hypothesis, one could examine whether the relationship between reading and
theory-of-mind skills is mediated by activity in the temporoparietal junction. If a significant mediation
is observed, then this would provide more specific insight into how literary reading actually causes
theory-of-mind skills to improve.

However, the term “causes” should be used with caution because when neuroimaging measures are
used in this way, they provide only correlational evidence. Thus, to make a fully causal argument, one
would need another study, such as one that disrupts activity in the temporoparietal junction (e.g., with
transcranial magnetic stimulation) to show that this breaks the association between reading and theory-of-
mind skill improvement. Nevertheless, even though this neuroimaging approach remains correlational,
this mediator-identification strategy can greatly aid communication science’s search for mechanisms by
providing more specific insights into the relationship between communication input variables, the
regional brain responses they evoke, and the resulting output variables. In this sense, communication
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neuroscience helps us to build better, more complete theories, and as such, the brain-as-mediator
approach will prove invaluable to anchor hypothetical constructs in observable brain mechanisms. Of
note, just like in the brain-as-DV approach, the inclusion of formal computational models would further
boost the explanatory power of this brain-as-mediator approach. Thus, if a computational model could
make specific predictions about how the information gleaned from fiction reading improves mentalizing
functions, and if temporoparietal junction activity tracked with such a model’s parameters, then this
would offer an even more convincing explanation. At present, however, computational modeling of
mentalizing and other social processes is still at an early stage (Cheong et al., 2017; Gonzalez & Chang,
2019; Hackel & Amodio, 2018) and our example remains hypothetical.

The Brain as Predictor

Finally, researchers can take the “brain as predictor” approach (Figure 2c). In this type of research,
scholars can use brain activity to predict future behaviors (Falk et al., 2015; Weber et al., 2018). More
specifically for communication researchers, brain activity can be measured at the time of message
exposure and either the raw brain activity or derivative measures can then be used to predict a future
outcome, for example, a behavioral measure collected at a later time point that is related to the message.
Importantly, this approach can be applied to both within-sample behaviors (predicting the future
behavior of the study participants who provided the brain data) and out-of-sample behaviors (predicting
the behavior of a population from the brain data of a small group of study participants). For example,
with regard to within-sample predictions, Falk and colleagues used fMRI to measure the brain response
of smokers while viewing anti-smoking messages and linked these responses to reductions in participant
smoking 1 month later (Falk, Berkman, Whalen, & Lieberman, 2011). Important to note, in this study,
brain data were able to predict message effectiveness above and beyond self-report. This further
demonstrates the benefit of adding neuroimaging methods to one’s research program. With regard to
out-of-sample predictions, Falk and colleagues followed their within-sample study by using the group’s
brain response to anti-smoking messages to predict message effectiveness at the population level (Falk
et al., 2012). Specifically, the brain data predicted which anti-smoking advertisements motivated more
people to contact an anti-smoking hotline. In another example of out-of-sample prediction research,
Weber et al. (2015) measured the brain response to anti-drug messages in a group of study participants
and forecasted message effectiveness in two other groups of individuals. Of note, with the brain-as-
predictor approach, the function of the brain region used to predict behavior does not necessarily need
to be germane to the research topic. In practice, however, the choice of brain region must either be
guided by a-priori considerations, or if a data-driven approach is taken, the predictive models must be
cross-validated to guard against spurious results (Varoquaux et al., 2017). This brain-as-predictor
approach is popular beyond the field of communication due to its obvious significance for other
domains. For instance, brain-as-predictor studies have been used in neuroeconomics to predict
commercially relevant outcomes such as music album sales and crowdfunding of projects (Berns &
Moore, 2012; Genevsky, Yoon, & Knutson, 2017; Knutson & Genevsky, 2018), and there is great interest
in developing brain markers for clinical diagnoses or subjective experiences such as pain and other
similar phenomena (Gabrieli, Ghosh, & Whitfield-Gabrieli, 2015; Rosenberg, Casey, & Holmes, 2018;
Woo, Chang, Lindquist, & Wager, 2017).

Future Developments in Communication Neuroscience

As described above, communication neuroscience strives to understand how the brain responds to
and produces communication phenomena. Brain activity can also be used to predict communication
outcomes. Each of the three experimental approaches outlined above (see Figure 2) can produce new
insights into communication phenomena, and we expect that future developments will expand our
understanding of the neural basis of communication effects, mechanisms, and predictive markers.
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Therefore, we next propose three potential developments that stand to further deepen the impact of
communication neuroscience.

First, measurement of brain activity will greatly improve in the future. Driven by funding from both
government and private industry, brain imaging methods are constantly improving – examples of this
include the BRAIN initiative by the US, the EU’s Human Brain Project, the China Brain Project, and
Facebook’s significant investment in neurotechnology development. Thus, current methods will con-
tinue to evolve, for example, by making existing technologies more sensitive, advancing their portability,
or decreasing their costs. In addition, new methods will also appear. For example, fMRI will not be the
final significant neuroimaging technology developed, entirely new imaging methods will be created that
allow us to image the brain with improved spatial and temporal resolution.

Next, advances in the analysis of neuroimaging data will improve our ability to extract knowledge
from data. This will greatly enhance the sensitivity of existingmethods. For example, an important recent
development is the application of machine learning to identify patterns of brain activity (whether they
serve as dependent variable, mediators, or predictors; Chang, Gianaros, Manuck, Krishnan, & Wager,
2015; Haxby et al., 2001; Norman, Polyn, Detre, & Haxby, 2006). Similarly, the rise of graph-theoretical
analyses promises to yield a new understanding of the brain as a complex network (Bassett & Sporns,
2017). In addition, emerging approaches allow for analyses of shared experiences in pairs and groups of
individuals, which is novel when compared to traditional, one-brain-at-a-time analytical approaches. For
example, analyses can examine shared neural responses for an audience watching a film (Cohen et al.,
2017; Schmälzle & Grall, in press). An in-depth discussion of these emerging techniques for
Communication Neuroscience has recently been provided by Turner, Huskey, and Weber (2019).
Finally, at the intersection of novel measurement and analysis methods, we see brain-computer-
interfaces (BCIs) as another emerging trend (Guger, Allison, & Edlinger, 2013). In brief, BCIs are
systems that record data from the live brain and immediately analyze the results to make a prediction
about behavior, for example, by letting patients who cannot speak select letters or words to express
themselves, or to control limb prosthetics. As of yet, most BCI applications lie within motor and
elementary cognitive domains, and the systems are invented by engineers, but rarely used for scientific
purposes. However, it seems possible that applications in social and affective contexts could be developed
and the field could become more integrated with communication neuroscience.

Finally, and most importantly, we foresee that the theoretical advances spurred by research within
communication neuroscience will create dynamic feedback loops with the general communication
field to fuel future theory and research. Evidence of such a development can be seen in cognitive
neuroscience, where neurally specified computational models are gradually filling in the black box of
the brain with computationally defined mechanisms (Hassabis et al., 2017; Kriegeskorte & Douglas,
2018). In a similar vein, as computational approaches to social neuroscience are becoming more
prominent (Stanley & Adolphs, 2013), they will provide us with a deeper understanding of how
social processes emerge from our neural biological substrate.

Summary

In conclusion, the brain – the biological organ of communication – has a firm foundation in the future of
communication research, as communication neuroscience has developed into an established approach to
study communication. Without much effort, communication scholars can harness the power of neuroi-
maging measurements to address key theory and research questions in their specific domains.
Communication scholars can capitalize on the many advantages provided by these methods, improving
our ability to explain and predict communication phenomena. However, the opportunity does not come
without costs: projects in communication neuroscience take longer, special training is required, and data
are more difficult to collect, analyze, and interpret. We have highlighted the pervasive issue of reverse
inference as one constraint on how neuroimaging can and cannot contribute to explanation-focused
communication theory. Despite these challenges, the future is bright for communication neuroscience.
To support this, we provided three approaches that communication scholars can take to address their
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research questions with neuroimaging data. These approaches will allow researchers to test theories
about hypothesized communicationmechanisms and stimulate the creation of new theories. Overall, this
upcoming research will greatly expand our knowledge of communication phenomena. In parallel,
methods and theories in cognitive neuroscience will continue to advance at a rapid pace. These forth-
coming developments will also influence the field. In sum, we look forward to the contributions of future
generations of communication neuroscientists.
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